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1 Introduction

It is well-known that optimality conditions are central to both theoretical and computational advances
in optimization. They were developed over centuries starting with the pioneering works of Bishop
N. Oresme (14th century) and P. de Fermat (17th century), and brought to their modern form by
Karush, John, Kuhn, Tucker, Polak, Mangasarian, Fromowitz, and many others. In this paper, we
discuss quantification of first-order necessary optimality conditions in terms of optimality functions
as developed by E. Polak and co-authors; see [12] for numerous examples in nonlinear programming,
semiinfinte optimization, and optimal control as well as [14, 17, 5, 9] for recent applications in stochastic
and semiinfinte programming, nonsmooth optimization, and control of uncertain systems.

It is apparent that how “far” a set of equalities, inequalities, and inclusions are from being satisfied
can be quantified in numerous ways. The framework of optimality functions, as laid out in [12, Section
3.3] and references therein, stipulates axiomatic requirements that such quantifications should satisfy to
facilitate the study and computation of approximate stationary points. Specifically, for an optimization
problem that can only be “solved” through the solution of an approximating problem, one seeks to
determine whether a near-stationary point of the approximating problem is an approximate stationary
point of the original problem. The requirements on optimality functions exactly ensure this property.
Moreover, there is ample empirical indications and some theoretical evidence (see for example [17, 16,
15, 8]) that computational benefits accrue from approximately solving a sequence of approximating
problems with increasing fidelity, each warm-started with the previously obtained point. Optimality
functions are tools to carry out such a scheme and give rise to adaptive rules for determining the timing
of switches to higher-fidelity approximations. Consequently, the framework of optimality functions
provides a pathway to constructing implementable algorithms consisting only of a finite number of
arithmetic operations and function evaluations†.

In this paper, we review the notion of optimality functions and illustrate the vast number of pos-
sibilities through several examples. In a novel application to nonlinear programming, we establish the
convergence of a primal interior point method in the absence of constraint qualifications and convexity
assumptions. We show that lopsided convergence of bifunctions [6, 7] is a useful tool for analyzing opti-
mality functions and the associated stationary points. In particular, we prove that lopsided convergence
of certain bifunctions, defining optimality functions of approximating problems, to a bifunction asso-
ciated with an optimality function of the original problem, guarantees the axiomatic requirements on
optimality functions. Moreover, we provide characterizations of stationary points under perturbations
and approximations using lopsided convergence. In the process, we extend the primary definitions and
results on lopsided convergence in [6, 7] from finite dimensions to any metric space.

The paper is organized as follows. Section 2 defines optimality functions and gives several ex-
amples. Section 3 introduces approximating optimization problems, epi-convergence, and consistent
approximations as defined by corresponding optimality functions, and demonstrates the implication for
algorithmic development. Section 4 develops lopsided convergence in the context of metric spaces. The
paper ends by utilizing lopsided convergence in the context of optimality functions.

†The distinction between implementable and conceptual algorithms appears to be due to E. Polak [11, 10].
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2 Optimality Functions: Definitions and Examples

We consider optimization problems defined on a metric space (X , ρX ), where C ⊂ X is a nonempty
feasible set and f : C → IR an objective function, i.e., problems of the form

minimize f(x) subject to x ∈ C ⊂ X .

The function f might be defined and finite-valued outside C, but that will be immaterial to the following
treatment. Therefore, the notation f : C → IR specifies the components f and C of optimization
problems of this form, without implying that f is necessarily finite only on C.

We denote by infC f ∈ [−∞,∞) and argminC f ⊂ C the corresponding optimal value and set of
optimal points, respectively, the latter possibly being empty. For ε ≥ 0, the set of ε-optimal solutions
is denoted by

ε- argminC f = {x ∈ C | f(x) ≤ infC f + ε} .

As usually, we say that x∗ ∈ X is locally optimal (for f : C → IR) if there exists a δ > 0 such that
f(x∗) ≤ f(x) for all x ∈ C with ρX (x, x

∗) ≤ δ.
Throughout the paper, we have that C is a nonempty subset of X and IR− = [−∞, 0]. We charac-

terize stationary points in terms of optimality functions as defined next.

2.1 Definition (optimality function) An upper semicontinuous function θ : X → IR− is an optimality
function for f : C → IR if C ⊂ X ⊂ X and

x ∈ C locally optimal for f : C → IR =⇒ θ(x) = 0.

The corresponding sets of stationary points and quasi-stationary points are SC,θ = {x ∈ C | θ(x) = 0}
and Qθ = {x ∈ X | θ(x) = 0}, respectively.

A series of examples help illustrate the concept; see also §5 and [12, 14, 17, 5, 9].

Example 1: Constrained Optimization over Convex Set. Consider the case X = IRn, C ⊂ X
closed and convex, and f : C → IR continuously differentiable. Then, the function

θ(x) = min
y∈C

{
⟨∇f(x), y − x⟩+ 1

2
∥y − x∥2

}
, x ∈ X = C,

satisfies the requirements of Definition 2.1 and is therefore an optimality function for f : C → IR. If
C = IRn, then the expression simplifies to

θ(x) = −1

2
∥∇f(x)∥2, (1)

which, of course, corresponds to the classical condition ∇f(x) = 0.

Example 2: Nonlinear Programming. Consider the case X = IRn, C = {x ∈ IRn | fj(x) ≤ 0, j =
1, ..., q}, and f , f1, ..., fq real-valued and continuously differentiable on IRn. Let ψ(x) = maxj=1,...,q fj(x)
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and ψ+(x) = max{0, ψ(x)}. Then, the function

θ(x) = min
y∈IRn

max

{
−ψ+(x) + ⟨∇f(x), y − x⟩+ 1

2
∥y − x∥2,

max
j=1,...,q

{fj(x)− ψ(x)+ + ⟨∇fj(x), y − x⟩}+ 1

2
∥y − x∥2

}
, x ∈ X = IRn, (2)

satisfies the requirements of Definition 2.1 and is therefore an optimality function for f : C → IR. The
condition θ(x) = 0 is equivalent to the Fritz-John conditions in the sense that when x ∈ C,

θ(x) = 0 ⇐⇒ there exist µ0, µ1, ..., µq ≥ 0, with

q∑
j=0

µj = 1,

such that µ0∇f(x) +
q∑

j=1

µj∇fj(x) = 0

q∑
j=1

µjfj(x) = 0.

However, since θ is defined beyond C, it might also be associated with quasi-stationary points outside
C. We refer to [12, Theorem 2.2.8] for proofs and further discussion.

Example 3: Minimax Problem. Consider the case X = C = IRn and f(x) = maxz∈Z φ(x, z),
x ∈ IRn, where φ : IRn × IRp → IR is continuous, the gradient ∇xφ : IRn × IRp → IRn with respect to
the first argument exists and is continuous in both arguments, and Z is a compact subset of IRp. Then,
the function

θ(x) = min
y∈IRn

max
z∈Z

{
φ(x, z)− f(x) + ⟨∇xφ(x, z), y − x⟩+ 1

2
∥y − x∥2

}
, x ∈ X = IRn, (3)

satisfies the requirements of Definition 2.1 and is therefore an optimality function for f : IRn → IR.
Moreover, θ(x) = 0 if and only if 0 ∈ ∂f(x) (the subdifferential of f); see [12, Theorem 3.1.6] for details.

We note that the upper semicontinuity of optimality functions ensures the computationally signifi-
cant property that if a sequence xν → x and θ(xν)↗0, for example with {xν} obtained as approximate
solutions of a corresponding optimization problem with gradually smaller tolerance, then θ(x) = 0 and
x ∈ Qθ, i.e., x is quasi-stationary. Although not discussed further here, the optimality functions in
Examples 1-3, and others, are also instrumental in constructing descent directions for the respective
optimization problems; see [12] for details.

3 Approximations and Implementable Algorithms

Problems involving functions defined in terms of integrals or optimization problems (as the maxi-
mization in Example 3), functions defined on infinite-dimensional spaces, and/or feasible sets defined
by an infinite number of constraints almost always require approximations. For example, one might
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resort to an approximating space X ν ⊂ X with points characterized by a finite number of parame-
ters. Here, the superscript ν indicates that we might consider a family of such approximating spaces,
ν ∈ IN = {1, 2, ..., }, with usually ∪ν∈INX ν dense in X . A feasible set Cν ⊂ X ν may be an approxima-
tion of C or simply Cν = C ∩ X ν ; see §5 for a concrete illustration in the area of optimal control. A
function fν : Cν → IR could be a tractable approximation of f : C → IR. An example helps illustrate
the situation.

Example 3: Minimax Problem (cont.). Suppose that fν(x) = maxz∈Zν φ(x, z), x ∈ IRn, with
Zν ⊂ Z consisting of a finite number of points. Clearly, fν is a (lower bounding) approximation of
f = maxz∈Z φ(·, z) as defined above. The function fν : IRn → IR can be associated with the optimality
function

θν(x) = min
y∈IRn

max
z∈Zν

{
φ(x, z)− fν(x) + ⟨∇xφ(x, z), y − x⟩+ 1

2
∥y − x∥2

}
, x ∈ X = IRn,

which, as formalized in §5, approximates the optimality function θ in (3). We note that θν can be evalu-
ated in finite time by solving a convex quadratic program with linear constraints; see [12, Theorem 2.1.6].

We next examine approximating functions fν : Cν → IR and review the notion of epi-convergence,
which provides a path to establishing that optimal points of the corresponding approximating problems
indeed approximate optimal points of an original problem. To establish the analogous results for
stationary points, we turn to optimality functions and slightly extend the approach in [12, Section 3.3]
by considering arbitrary metric spaces and other minor generalizations. The section ends with a result
that facilitates the development of implementable algorithms for the minimization of f : C → IR, which
is then illustrated with the construction of an interior point method. Throughout the paper, we have
that Cν is a nonempty subset of X .

3.1 Epi-Convergence

We recall that epi-convergence, as defined next, is the key property when examining approximations of
optimization problems; see [1, 3, 13] for more comprehensive treatments.

3.1 Definition (epi-convergence) The functions {fν : Cν → IR}ν∈IN epi-converge to f : C → IR if

(i) for every sequence xν → x ∈ X , with xν ∈ Cν , we have that liminf fν(xν) ≥ f(x) if x ∈ C and
fν(xν) → ∞ otherwise;

(ii) for every x ∈ C, there exists a sequence {xν}ν∈IN , with xν ∈ Cν , such that xν → x and
limsup fν(xν) ≤ f(x).

A main consequence of epi-convergence is the following well-known result.

3.2 Theorem (convergence of minimizers) Suppose that the functions {fν : Cν → IR}ν∈IN epi-converge
to f : C → IR. Then,

limsup (infCν fν) ≤ infC f.

Moreover, if xk ∈ argmaxCνk f
νk and xk → x for some increasing subsequence {ν1, ν2, ...} ⊂ IN , then

x ∈ argmaxC f and limk→∞ infCνk fνk = infC f .
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Proof. The second part is essentially in [2, Theorem 2.5], but not for the finite-valued setting. The first
and second parts are in [6, Theorem 2.6] for the IRn case. The proof carries over essentially verbatim.

A strengthening of the notion of epi-convergence ensures the convergence of infima.

3.3 Definition (tight epi-convergence) The functions {fν : Cν → IR}ν∈IN epi-converge tightly to
f : C → IR if fν epi-converge to f and for all ε > 0, there exists a compact set Bε ⊂ X and an integer
νε such that

infBε∩Cν fν ≤ infCν fν + ε for all ν ≥ νε.

3.4 Theorem (convergence of infima) Suppose that the functions {fν : Cν → IR}ν∈IN epi-converge to
f : C → IR and infC f is finite. Then, they epi-converge tightly

(i) if and only if infCν fν → infC f .

(ii) if and only if there exists a sequence εν ↘0 such that εν- argmin
Cν

fν set-converges‡ to argmin
C

f .

Proof. Again, the proof in [6, Theorem 2.8] can be immediately translated to the present setting.

3.2 Consistent Approximations

The convergence of optimal points as stipulated above is fundamental, but an analogous result for
stationary points is also important, especially for nonconvex problems. Optimality functions play a
central role in the development of such results. Combining epi-convergence with a limiting property
for optimality functions lead to consistent approximations in the sense of E. Polak as defined next. We
note that our definition of consistent approximations is an extension from that in [12, Section 3.3] as
we consider arbitrary metric spaces and not only normed linear spaces.

3.5 Definition (consistent approximations) The pairs {(fν : Cν → IR, θν : Xν → IR−)}ν∈IN of
functions and corresponding optimality functions are weakly consistent approximations of the function
and optimality-function pair (f : C → IR, θ : X → IR−) if

(i) {fν : Cν → IR}ν∈IN epi-converge to f : C → IR and

(ii) for every xν → x ∈ X , with xν ∈ Xν , limsup θν(xν) ≤ θ(x) if x ∈ X, and θν(xν) → −∞ otherwise.

If in addition θν(x) < 0 for all x ∈ Xν\Cν and ν, then {(fν : Cν → IR, θν : Xν → IR−)}ν∈IN are
consistent approximations of (f : C → IR, θ : X → IR−).

We recall that the epigraph of f : C → IR is defined by

epi f = {(x, x0) ∈ X × IR | x ∈ C, f(x) ≤ x0}.
‡We recall that the outer limit of a sequence of sets {Aν}ν∈IN , denoted by limsupAν , is the collection of points y

to which a subsequence of {yν}ν∈IN , with yν ∈ Aν , converges. The inner limit, denoted by liminf Aν , is the points to
which a sequence of {yν}ν∈IN , with yν ∈ Aν , converges. If both limits exist and are identical, we say that the set is the
Painlevé-Kuratowski limit of {Aν}ν∈IN and that Aν set-converges to this set; see [4, 13].
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Since epi-convergence is equivalent to the set-convergence§ of the corresponding epigraphs, we have that
Definition 3.5(i) amounts to

epi fν set-converges to f.

Similarly, the hypograph of f : C → IR is defined by

hypo f = {(x, x0) ∈ X × IR | x ∈ C, f(x) ≥ x0}.

In view of the definition of set-convergence, we therefore have that Definition 3.5(ii) amounts to

limsup hypo θν ⊂ hypo θ.

The additional condition in Definition 3.5 removing “weakly” can be viewed as a constraint qual-
ification as it eliminates the possibility of quasi-stationary points that are not stationary point for
fν : Cν → IR, which might occur if the domain of θν is not restricted to Cν or other conditions are
included.

The main consequence of consistency is given next.

3.6 Theorem (convergence of stationary points) Suppose that the pairs {(fν : Cν → IR, θν : Xν →
IR−)}ν∈IN are weakly consistent approximations of (f : C → IR, θ : X → IR−) and {xν}ν∈IN , xν ∈ Xν ,
is a sequence satisfying

θν(xν) ≥ −εν for all ν, with εν ≥ 0 and εν → 0.

Then, every cluster point x of {xν}ν∈IN satisfies x ∈ Qθ, i.e., θ(x) = 0.
If in addition the pairs are consistent approximations, εν = 0 for sufficiently large ν, and {fν(xν)}ν∈IN

is bounded from above, then x ∈ C, i.e., x ∈ SC,θ.

Proof. Suppose that xν → x. Since −εν ≤ θν(xν) for all ν, x ∈ X. Moreover, 0 ≤ limsup θν(xν) ≤
θ(x) ≤ 0 and the first conclusion follows. In view of the definition of consistent approximations, we
find that θν(xν) = 0 for sufficiently large ν and therefore xν ∈ Cν for such ν. The epi-convergence of
fν : Cν → IR to f : C → IR implies that liminf fν(xν) ≥ f(x) if x ∈ C and fν(xν) → ∞ if x ̸∈ C. The
latter possibility is ruled about by assumption and therefore x ∈ C.

3.3 Algorithms

Theorem 3.6 provides a direct path to the construction of an implementable algorithm for minimizing
f : C → IR. Specifically, construct a family of approximations {fν : Cν → IR} and corresponding
optimality functions {θν : Xν → IR−}, and then implement the following algorithm.

Algorithm.

1. Set εν ≥ 0, with εν → 0, and ν = 1.

2. Obtain an approximate (quasi-)stationary point xν for fν : Cν → IR that satisfies θν(xν) ≥ −εν .
§Here, we consider set-convergence of subsets of X × IR, which is equipped with the metric ρ((x, x0), (x

′, x′
0)) =

max{ρX (x, x′), |x0 − x′
0|} for x, x′ ∈ X and x0, x

′
0 ∈ IR.
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3. Replace ν by ν + 1 and go to Step 2.

If the pairs {(fν : Cν → IR, θν : Xν → IR−)}ν∈IN are weakly consistent approximations of (f : C →
IR, θ : X → IR−), then every cluster point of the constructed sequence {xν} will be quasi-stationary
for f : C → IR by Theorem 3.6. The algorithm is fully implementable under the practically reasonable
assumption that one can obtain an approximate quasi-stationary point of fν : Cν → IR in finite time.

Example 2: Nonlinear Programming (cont.). Consider the standard logarithmic barrier approx-
imation

fν(x) = f(x)− tν
q∑

j=1

log[−fj(x)], x ∈ Cν = {x ∈ IRn | fj(x) < 0, j = 1, ..., q},

where tν ↘0. We first establish epi-convergence of fν : Cν → IR to f : C → IR. Suppose that xν → x,
with xν ∈ Cν . Since Cν ⊂ C and C is closed, x ∈ C. Let ε > 0. There exists a νε such that
−tν log[−fj(xν)] > −ε/q for all j with log[−fj(x)] ≥ 0 and ν ≥ νε. Hence,

fν(xν) ≥ f(xν)− ε for all ν ≥ νε.

In view of the continuity of f and the fact that ε is arbitrary, we conclude that Definition 3.1(i) is
satisfied. Next, let x ∈ C. There exists a sequence {xν}ν∈IN such that xν ∈ Cν tends to x sufficiently
slowly such that tν

∑q
j=1 log[−fj(xν)] → 0. Consequently, fν(xν) → f(x), which satisfies Definition

3.1(ii). Thus, fν : Cν → IR epi-converge to f : C → IR. We next analyze optimality functions. Using a
minmax theorem, one can show that (2) is equivalently expressed as

θ(x) = −min
µ∈M

µ0ψ+(x) +

q∑
j=1

µj [ψ+(x)− fj(x)] +
1

2

∥∥∥∥∥∥µ0∇f(x) +
q∑

j=1

µj∇fj(x)

∥∥∥∥∥∥
2 , x ∈ X = IRn

(4)
where M = {(µ0, µ1, ..., µq) | µj ≥ 0, j = 0, 1, ..., q,

∑q
j=0 = 1}; see [12, Theorem 2.2.8]. By (1) and

direct differentiation of fν , we obtain an approximating optimality function

θν(x) = −1

2

∥∥∥∥∥∥∇f(x) +
q∑

j=1

mν
j (x)∇fj(x)

∥∥∥∥∥∥
2

, x ∈ Cν ,

where

mν
j (x) =

−tν

fj(x)
.

Suppose that xν → x ∈ IRn, with xν ∈ Cν . Since xν ∈ Cν ⊂ C and C is closed, x ∈ C. Let

cν = 1 +

q∑
j=1

mν
j (x

ν), µν0 =
1

cν
, and µνj =

mν
j (x

ν)

cν
, j = 1, ..., q.

Consequently, µν = (µν0 , µ
ν
1 , ..., µ

ν
q ) ∈M for all ν. SinceM is compact, {µν} has at least one convergent

subsequence. Suppose that µν →N µ∞, with N an infinite subsequence of IN . If j is such that fj(x) < 0,
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then µνj →N 0 and consequently µ∞j = 0 necessarily. In view of the continuity of the gradients, we then
have that

θν(xν)

(cν)2
= −1

2

∥∥∥∥∥∥ 1

cν
∇f(xν) +

q∑
j=1

mν
j (x

ν)

cν
∇fj(xν)

∥∥∥∥∥∥
2

→N −1

2

∥∥∥∥∥∥µ∞0 ∇f(x) +
q∑

j=1

µ∞j ∇fj(x)

∥∥∥∥∥∥
2

.

Since x ∈ C, ψ+(x) = 0. Therefore we also have that

θν(xν)

(cν)2
→N −µ∞0 ψ+(x)−

q∑
j=1

µ∞j [ψ+(x)− fj(x)]−
1

2

∥∥∥∥∥∥µ∞0 ∇f(x) +
q∑

j=1

µ∞j ∇fj(x)

∥∥∥∥∥∥
2

≤ θ(x),

where the inequality follows from the fact that µ∞ ∈ M furnishes a possibly suboptimal solution in
(4). Because θν(xν) ≤ 0 and (cν)2 ≥ 1, the inequality remains valid when we drop the denominator on
the left-hand side. Hence, we have shown that limsup θν(xν) ≤ θ(x). This establishes the consistency
of {fν : Cν → IR, θν : Cν → IR−)}. Consequently, the above algorithm, which can then be viewed as
a primal interior point method, generates cluster points that are stationary for f : C → IR in the sense
of Fritz-John. We observe that this is achieved without any constraint qualifications and convexity as-
sumptions. In this case, Step 2 of the algorithm can be achieved by any of the standard unconstrained
optimization methods in finite time.

The key technical challenge associate with the above scheme is to establish (weak) consistency. In
the next section, we provide tools for this purpose that rely on lopsided convergence.

4 Lopsided Convergence

In view of the definition of optimality functions, it is apparent that

if Qθ ̸= ∅, then Qθ = argmaxX θ.

Moreover, Examples 1-3 indicate that many optimality functions take the form

θ(x) = inf
y∈Y

F (x, y), with Y ⊂ Y (5)

for some metric space (Y, ρY) and function F . In fact, in our examples, Y = IRn and F involves
gradients and other quantities; §5 provides an example in infinite dimensions. From these observations
it is apparent that the consideration of maxinf-problems of the form

max
x∈X

inf
y∈Y

F (x, y)

for bifunction F : X×Y → IR will provide direct insight about (quasi-)stationary points of optimization
problems. We therefore set out to describe the fundamental tool for examining the convergence of such
maxinf-problems, which is lopsided convergence. In the process, we extend some of the results in [6, 7]
to general metric spaces.
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Suppose that (X , ρX ) and (Y, ρY) are metric spaces, X ⊂ X and Y ⊂ Y are nonempty, and
F : X × Y → IR is a bifunction. We say that x∗ is a maxinf-point of F if

x∗ ∈ argmax
x∈X

{
inf
y∈Y

F (x, y)

}
.

The study of such functions is facilitated by the notion of lopsided convergence as defined next.

4.1 Definition (lopsided convergence) The bifunctions {F ν : Xν × Y ν → IR}ν∈IN lop-converge to
F : X × Y → IR if

(i) for all y ∈ Y and xν → x ∈ X , with xν ∈ Xν , there exists yν → y, with yν ∈ Y ν , such that
limsupF ν(xν , yν) ≤ F (x, y) if x ∈ X and F ν(xν , yν) → −∞ otherwise.

(ii) for all x ∈ X, there exists xν → x, with xν ∈ Xν , such that for all yν → y ∈ Y, with yν ∈ Y ν ,
liminf F ν(xν , yν) ≥ F (x, y) if y ∈ Y and F ν(xν , yν) → ∞ otherwise.

We assume throughout that the setsXν ⊂ X and Y ν ⊂ Y are nonempty. We start with a preliminary
result.

4.2 Proposition (epi-convergence of slices) Suppose that the bifunctions {F ν : Xν × Y ν → IR}ν∈IN
lop-converge to F : X × Y → IR. Then, for all x ∈ X, there exists xν → x, with xν ∈ Xν such that the
functions F ν(xν , ·) epi-converge to F (x, ·).

Proof. We follow the same arguments as in [6, Proposition 3.2], where X = IRn is considered. From
Definition 4.1(ii) there exists xν → x, with xν ∈ Xν , such that the functions {F ν(xν , ·)}ν∈IN and F (x, ·)
satisfy Definition 3.1(i). From Definition 4.1(i), for any y ∈ Y and xν → x, with xν ∈ Xν , one can find
yν → y, with yν ∈ Y ν , such that Definition 3.1(ii) is also satisfied.

We recall that the inf-projections of the bifunctions F ν : Xν × Y ν → IR and F : X × Y → IR are
defined as the functions

h(x) = inf
y∈Y

F (x, y), for x ∈ X, and hν(x) = inf
y∈Y ν

F ν(x, y), for x ∈ X.

In addition to their overall interest, inf-projections of bifunctions are central to the study of optimality
functions as clearly highlighted by (5).

4.3 Theorem (containment of inf-projections) Suppose that the bifunctions {F ν : Xν ×Y ν → IR}ν∈IN
lop-converge to F : X × Y → IR and −∞ < infY F (x, ·) for some x ∈ X. Then, the inf-projections
hν : Xν → [−∞,∞) and h : X → [−∞,∞) satisfy

limsup hypohν ⊂ hypoh.

Proof. Suppose that (x, x0) ∈ limsup hypohν . Then there exists a sequence {(xν , xν0)}ν∈N , with N
an infinite subsequence of IN , xν ∈ Xν , hν(xν) ≥ xν0 , x

ν →N x, and xν0 →N x0. If x ̸∈ X, then take
y ∈ Y and construct a sequence yν → y, with yν ∈ Y ν , such that F ν(xν , yν) →N −∞, which exists by
Definition 4.1(i). However,

xν0 ≤ hν(xν) ≤ F ν(xν , yν), ν ∈ N,
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imply to a contradiction since xν0 →N x0 ∈ IR. Thus, x ∈ X. If h(x) = −∞, then there exists y ∈ Y
such that F (x, y) ≤ x0−1. Definition 4.1(i) ensures that there exists a sequence yν → y, with yν ∈ Y ν ,
such that limsupF ν(xν , yν) ≤ F (x, y). Consequently,

x0 = limsupν∈N xν0 ≤ limsupν∈N hν(xν) ≤ limsupν∈N F ν(xν , yν) ≤ F (x, y) ≤ x0 − 1,

which is a contradiction. Hence, it suffices to consider the case with h(x) finite. Given any ε > 0
arbitrarily small, pick yε ∈ Y such that F (x, yε) − ε ≤ h(x). Then Definition 4.1(i) again yields
yν → yε, with y

ν ∈ Y ν , such that

limsupν∈N hν(xν) ≤ limsupν∈N F ν(xν , yν) ≤ F (x, yε) ≤ h(x) + ε,

implying limsupν∈N hν(xν) ≤ h(x). Since

x0 = limsupν∈N xν0 ≤ limsupν∈N hν(xν) ≤ h(x),

the conclusion follows.

Additional results can be obtained under a strengthening of the lopsided convergence analogous to
tight epi-convergence.

4.4 Definition (ancillary-tight lop-convergence) The lop-convergence of bifunctions {F ν : Xν ×Y ν →
IR}ν∈IN to F : X × Y → IR is ancilliary-tight if Definition 4.1 holds and for any ε > 0 one can find a
compact set Bε ⊂ Y, depending possibly on the sequence xν → x selected in Definition 4.1(ii), such
that

inf
y∈Y ν∩Bε

F ν(xν , y) ≤ inf
y∈Y ν

F ν(xν , y) + ε for sufficiently large ν.

Under ancillary-tight lop-convergence, we can strengthen the conclusion of Theorem 4.3 as follows.

4.5 Theorem (hypo-convergence of inf-projections) Suppose that the bifunctions {F ν : Xν × Y ν →
IR}ν∈IN lop-converge ancillary-tightly to F : X × Y → IR and −∞ < infY F (x, ·) for some x ∈ X.
Then, the corresponding inf-projections hν : Xν → [−∞,∞) hypo-converges to the inf-projection
h : X → [−∞,∞), i.e., hypohν set-converges to hypoh.

Proof. Since it is a very short proof, we include it for completeness sake. It is verbatim the same as
that of [6, Theorem 3.4]. Let x ∈ X be such that h(x) is finite. Now, choose xν → x, with xν ∈ Xν ,
such that F ν(xν , ·) epi-converge to F (x, ·), cf. Proposition 4.2. In fact, they epi-converge tightly as an
immediate consequence of ancillary-tightness. Thus,

hν(xν) = inf
y∈Y ν

F ν(xν , yν) → inf
y∈Y

F (x, y) = h(x),

via Theorem 3.4.

Further strengthening of the notion is also beneficial.

4.6 Definition (tight lop-convergence) The lop-convergence of bifunctions {F ν : Xν × Y ν → IR}ν∈IN
to F : X × Y → IR is tight if Definition 4.4 holds and for any ε > 0 one can find a compact set Aε ⊂ X
such that

sup
x∈Xν∩Aε

inf
y∈Y ν

F ν(x, y) ≥ sup
x∈Xν

inf
y∈Y ν

F ν(x, y)− ε for sufficiently large ν.

11



Under tight lop-convergence, we can strengthen the conclusion of Theorem 4.5 as follows.

4.7 Theorem (approximating maxinf-points) Suppose that the bifunctions {F ν : Xν × Y ν → IR}ν∈IN
lop-converge tightly to F : X × Y → IR and supX infY F is finite. Then,

sup
x∈Xν

inf
y∈Y ν

F ν(x, y) → sup
x∈X

inf
y∈Y

F (x, y).

Moreover, for every x∗ ∈ argmaxx∈X infy∈Y F (x, y), there exist an infinite subsequence N of IN ,
{εν}ν∈N , with εν ↘0, and {xν}ν∈N , with xν ∈ εν- argmaxx∈Xν infy∈Y ν F ν(x, y), such that xν →N x.
Conversely, if such sequences exists, then supx∈Xν infy∈Y ν F ν(x, y) →N infy∈Y F (x

∗, ·)

Proof. We refer to the arguments of the proof of [6, Theorem 3.7].

5 Applications and Further Examples

We now return to the context of optimality functions of the form (5). We start with providing a
sufficient condition for the required upper semicontinuity of an optimality function; see Definition 2.1.
We state the result for general inf-projections.

5.1 Theorem (upper semicontinuity of inf-projection) If the bifunction F : X × Y → IR is lower
semicontinuous, F (·, y) is upper semicontinuous for all y ∈ Y , and Y is closed, then the corresponding
inf-projection h(x) = infY F (x, ·), x ∈ X, is upper semicontinuous.

Proof. Let xν → x ∈ X, with xν ∈ X. We show that the functions F (xν , ·) epi-converge to F (x, ·),
which are all defined on Y . Suppose that yν → y, with yν ∈ Y . By the closedness of Y , y ∈ Y .
Moreover, liminf F (xν , yν) ≥ F (x, y) by the lower semicontinuity of F at (x, y). Consequently, part (i)
of Definition 3.1 is satisfied. Next, let yν = y ∈ Y . Then, limsupF (xν , yν) = limsupF (xν , y) ≤ F (x, y)
by the upper semicontinuity of F (·, y) and part (ii) of Definition 3.1 is satisfied. Since F (xν , ·) epi-
converge to F (x, ·), Theorem 3.2 demonstrates that limsuph(xν) ≤ h(x).

Applications of this theorem to Examples 1-3 establish the upper semicontinuity of the corresponding
optimality functions.

We next turn to the requirement for consistency in Definition 3.5(ii).

5.2 Theorem (sufficient condition for consistency, optimality function part) Suppose that the bifunc-
tions {F ν : Xν × Y ν → IR}ν∈IN lop-converge to F : X × Y → IR and that the bifunctions define the
optimality functions θν = infy∈Y ν F ν(·, y) and θ = infy∈Y F (·, y), with −∞ < θ(x) for some x ∈ X.
Then,

for every xν → x ∈ X , with xν ∈ Xν , limsup θν(xν) ≤ θ(x) if x ∈ X, and θν(xν) → −∞ otherwise.

Proof. The result is a direct consequence of Theorem 4.3.

In view of this result, it is clear that (weak) consistency will be ensured by epi-convergence of the
approximating objective functions and feasible sets as well as lopsided convergence of the approximating
bifunctions defining the corresponding optimality functions.
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We illustrate Theorem 5.2 in the context of Example 3.

Example 3: Minimax Problem (cont.). Suppose that for every z ∈ Z, there exists a sequence
zν ∈ Zν such that zν → z. Let

F ν(x, y) = max
z∈Zν

{
φ(x, z)− fν(x) + ⟨∇xφ(x, z), y − x⟩+ 1

2
∥y − x∥2

}
, x, y ∈ IRn,

and F be defined similarly with the superscripts removed. We next show lopsided convergence of F ν to
F . First consider part (i) of Definition 4.1. Let y ∈ IRn and xν → x ∈ IRn. Set yν = y for all ν. Clearly,
limsupF ν(xν , yν) ≤ limsupF (xν , y) = F (x, y) by the continuity of F and part (i) holds. Second, we
consider part (ii). Let x ∈ IRn and yν → y ∈ IRn. Set xν = x for all ν. Let

zx ∈ argmaxz∈Z

{
φ(x, z)− f(x) + ⟨∇xφ(x, z), y − x⟩+ 1

2
∥y − x∥2

}
.

Let ε > 0. By assumption on Zν and the continuity of φ(x, ·) and ∇xφ(x, ·), there exists zν ∈ Zν and
ν0 such that

φ(x, zν)− φ(x, zx) > −ε

∥∇xφ(x, z
ν)−∇xφ(x, zx)∥ < min

{
ε,

ε

∥y − x∥

}
for all ν ≥ ν0. Consequently, ν ≥ ν0,

F ν(xν , yν) = F ν(x, yν)

= max
z∈Zν

{
φ(x, z)− fν(x) + ⟨∇xφ(x, z), y

ν − x⟩+ 1

2
∥yν − x∥2

}
≥ φ(x, zν)− f(x) + ⟨∇xφ(x, z

ν), yν − x⟩+ 1

2
∥yν − x∥2

= φ(x, zx)− f(x) + ⟨∇xφ(x, zx), y − x⟩+ 1

2
∥y − x∥2 + φ(x, zν)− φ(x, zx)

+ ⟨∇xφ(x, z
ν)−∇xφ(x, zx), y − x⟩+ ⟨∇xφ(x, z

ν), yν − y⟩+ 1

2
∥yν − x∥2 − 1

2
∥y − x∥2

> φ(x, zx)− f(x) + ⟨∇xφ(x, zx), y − x⟩+ 1

2
∥y − x∥2

− ε− ε+ ⟨∇xφ(x, z
ν), yν − y⟩+ 1

2
∥yν − x∥2 − 1

2
∥y − x∥2

= F (x, y)− 2ε+ ⟨∇xφ(x, z
ν), yν − y⟩+ 1

2
∥yν − x∥2 − 1

2
∥y − x∥2

Since yν → y, {zν} is bounded, and ∇xφ is continuous, it follows that liminf F ν(xν , yν) ≥ F (x, y)− 2ε.
Since ε was arbitrary, part (ii) of Definition 4.1 holds and F ν therefore lop-converge to F . In view of
Theorem 5.2 and the fact that epi-convergence is also easily established, we have that {(fν : IRn →
IR, θν : IRn → IR−)} are consistent approximations of {(f : IRn → IR, θ : IRn → IR−)} in this case.
The above algorithm therefore is implementable for the solution of the semiinfinite minimax problem
minx∈IRn maxz∈Z φ(x, z).
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As we see next, under slightly stronger assumptions, the approximating bifunctions do not need to
be associated with an optimality function to achieve convergence to quasi-stationary points.

5.3 Theorem (convergence to quasi-stationary points) Suppose that the bifunctions {F ν : Xν×Y ν →
IR}ν∈IN lop-converge ancillary-tightly to F : X×Y → IR and θ = infy∈Y F (·, y) is an optimality function
for f : C → IR with Qθ ̸= ∅. If xν ∈ argmaxx∈Xν infy∈Y ν F ν(x, y) for all ν, then every cluster point x
of {xν}ν∈IN is quasi-stationary for f : C → IR, i.e., x ∈ Qθ.

Proof. By Theorem 4.5, hν = infy∈Y ν F ν(·, y) hypo-converge to h = infy∈Y F (·, y). By translating
Theorem 3.2 from the stated minimization framework to a maximization framework we obtain that
x ∈ argmaxX h. Since Qθ ̸= ∅, Qθ = argmaxX h and the conclusion follows.

Further characterization of (quasi-)stationary points is available under tight lopsided convergence.

5.4 Theorem (characterization of quasi-stationary points) Suppose that the bifunctions {F ν : Xν ×
Y ν → IR}ν∈IN lop-converge tightly to F : X × Y → IR and θ = infy∈Y F (·, y) is an optimality function
for f : C → IR with Qθ ̸= ∅. For every x ∈ Qθ there exist an infinite subsequence N of IN , {εν}ν∈N ,
with εν ↘0, and {xν}ν∈N , with xν ∈ εν- argmaxx∈Xν infy∈Y ν F ν(x, y), such that xν →N x.

Proof. The result is a direct consequence of Theorem 4.7.

We end the paper with an example from the area of optimal control and adjust the notation ac-
cordingly.

Example 4: Optimal Control. We here follow the set-up in Section 5.6 and Chapter 4 of [12], which
contain further details. For g : IRn × IRm → IRn, we consider the dynamical system

ẋ(t) = g(x(t), u(t)), for t ∈ [0, 1], with x(0) = ξ ∈ IRn,

where the control u ∈ Lm
∞ = {u : [0, 1] → IRm | measurable, essentially bounded}. Since such controls

are contained in the space of square-integrable functions from [0, 1] to IRm, the usual L2-norm applies;
see [12, p.709] for a motivation for this “hybrid” set-up. Let H = IRn × Lm

∞. For initial condition and
control pairs η = (ξ, u) ∈ H and η̄ = (ξ̄, ū) ∈ H, we equip H with the inner product and norm

⟨η, η̄⟩H = ⟨ξ, ξ̄⟩+
∫ 1

0
⟨u(t), ū(t)⟩dt and ∥η∥2H = ⟨η, η⟩H.

We consider control constraints of the form u(t) ∈ C, for almost every t ∈ [0, 1] for some given convex
and compact set C ⊂ IRm. By imposing the constraints for almost every t instead of every t, we deviate
slightly from [12] and follow [9]. We therefore also define the feasible set

U = Lm
∞ ∩ {u | u(t) ∈ C, for almost every t ∈ [0, 1]} and H = IRn × U.

Under standard assumptions, a solution of the differential equation, for a given η ∈ H, denoted by xη is
unique, Lipschitz continuous, and Gateaux differentiable in η. Consequently, for a given φ : IRn×IRn →
IR, Lipschitz continuously differentiable on bounded sets, the function f : H → IR defined by

f(η) = φ(ξ, xη(1)), for η = (ξ, u) ∈ H,

14



has a Gateaux differential of the form ⟨∇f(η), η̄ − η⟩H for some Lipschitz continuous gradient ∇f(η)
given in [12, Corollary 5.6.9]. The optimal control problem

minimize f(η) subject to η ∈ H,

analogous to Example 1, has an optimality function

θ(η) = min
η̄∈H

F (η, η̄), for η ∈ H,

where

F (η, η̄) = ⟨∇f(η), η̄ − η⟩H +
1

2
∥η̄ − η∥2H, for η, η̄ ∈ H.

We next consider approximations. Let Uν ⊂ U , ν ∈ IN , consist of the piecewise constant functions
that are constant on each of the intervals [(k − 1)/ν, k/ν), k = 1, ..., ν. Set Hν = IRn × Uν . Moreover,
let xνη be the (unique) solution of the forward Euler approximation of the differential equation, using
time-step 1/ν, given input η = (ξ, u) ∈ H. An approximate problem then takes the form

minimize fν(η) subject to η ∈ Hν ,

where
fν(η) = φ(ξ, xνη(1)).

One can show that
θν(η) = min

η̄∈Hν
F ν(η, η̄), for η ∈ Hν ,

where

F ν(η, η̄) = ⟨∇fν(η), η̄ − η⟩H +
1

2
∥η̄ − η∥2H, for η, η̄ ∈ Hν ,

is an optimality function of fν : Hν → IR, where the Lipschitz continuous gradient ∇fν(η) is given in
[12, Theorem 5.6.19].

By [12, Theorem 4.3.2], for every bounded set S ⊂ H, there exists a CS < ∞ such that |f(η) −
fν(η)| ≤ CS/ν and ∥∇f(η) − ∇fν(η)∥H ≤ CS/ν for all η ∈ S. Moreover, ∪ν∈INH

ν is dense in H.
Consequently, it is easily established that fν : Hν → IR epi-converge to f : H → IR. We next consider
the optimality functions. Let η̄ ∈ H and ην → η ∈ H, with ην ∈ Hν . Necessarily, η ∈ H. Due to the
density result, there exists η̄ν → η̄, with η̄ν ∈ Hν . Hence,

|F ν(ην , η̄ν)− F (η, η̄)| ≤ ∥∇fν(ην)−∇f(η)∥H∥η̄ν − ην∥H

+ ∥∇f(η)∥H∥η̄ν − ην − η̄ + η∥H +
1

2
∥η̄ν − ην∥2H − 1

2
∥η̄ν − ην∥2H → 0

and we have shown Definition 4.1(i). Using similar arguments, we also establish part (ii) and the
lopsided convergence of F ν to F . Consequently, {(fν : Hν → IR, θν : Hν → IR−)}ν∈IN are consistent
approximations of (f : H → IR, θ : H → IR−). Since the minimization of fν : Hν → IR is equivalent to
an optimization problem on a Euclidean space, the above algorithm is implementable for the infinite-
dimensional problem f : H → IR.

15



References

[1] H. Attouch. Variational Convergence for Functions and Operators. Applicable Mathematics Sci-
ences. Pitman, 1984.

[2] H. Attouch and R. Wets. A convergence theory for saddle functions. Transactions of the American
Mathematical Society, 280(1):1–41, 1983.

[3] J.-P. Aubin and H. Frankowska. Set-Valued Analysis. Birkhäuser, 1990.
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